Cytoplasmic–Nuclear Incompatibility Between Wild Isolates of Caenorhabditis nouraguensis
نویسندگان
چکیده
How species arise is a fundamental question in biology. Species can be defined as populations of interbreeding individuals that are reproductively isolated from other such populations. Therefore, understanding how reproductive barriers evolve between populations is essential for understanding the process of speciation. Hybrid incompatibility (for example, hybrid sterility or lethality) is a common and strong reproductive barrier in nature. Here we report a lethal incompatibility between two wild isolates of the nematode Caenorhabditis nouraguensis Hybrid inviability results from the incompatibility between a maternally inherited cytoplasmic factor from each strain and a recessive nuclear locus from the other. We have excluded the possibility that maternally inherited endosymbiotic bacteria cause the incompatibility by treating both strains with tetracycline and show that hybrid death is unaffected. Furthermore, cytoplasmic-nuclear incompatibility commonly occurs between other wild isolates, indicating that this is a significant reproductive barrier within C. nouraguensis We hypothesize that the maternally inherited cytoplasmic factor is the mitochondrial genome and that mitochondrial dysfunction underlies hybrid death. This system has the potential to shed light on the dynamics of divergent mitochondrial-nuclear coevolution and its role in promoting speciation.
منابع مشابه
Nuclear-Cytoplasmic Conflict in Pea (Pisum sativum L.) Is Associated with Nuclear and Plastidic Candidate Genes Encoding Acetyl-CoA Carboxylase Subunits
In crosses of wild and cultivated peas (Pisum sativum L.), nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plas...
متن کاملWidespread Genomic Incompatibilities in Caenorhabditis elegans
In the Bateson-Dobzhansky-Muller (BDM) model of speciation, incompatibilities emerge from the deleterious interactions between alleles that are neutral or advantageous in the original genetic backgrounds, i.e., negative epistatic effects. Within species such interactions are responsible for outbreeding depression and F2 (hybrid) breakdown. We sought to identify BDM incompatibilities in the nema...
متن کاملFull-genome evolutionary histories of selfing, splitting, and selection in Caenorhabditis.
The nematode Caenorhabditis briggsae is a model for comparative developmental evolution with C. elegans. Worldwide collections of C. briggsae have implicated an intriguing history of divergence among genetic groups separated by latitude, or by restricted geography, that is being exploited to dissect the genetic basis to adaptive evolution and reproductive incompatibility; yet, the genomic scope...
متن کاملHeteromorphism for Heterokaryon Incompatibility Genes in Natural Populations of NEUROSPORA CRASSA.
Five Neurospora crassa isolates from each of three sites in Louisiana were compared for genotype at five heterokaryon incompatibility (het) loci. The comparisons were made using duplications (partial diploids), based on the fact that duplications heterozygous for het loci have strikingly abnormal phenotypes which greatly facilitate the study of such genes. Duplications were synthesized in cross...
متن کاملReduced Expression of BjRCE1 Gene Modulated by Nuclear-Cytoplasmic Incompatibility Alters Auxin Response in Cytoplasmic Male-Sterile Brassica juncea
The signal from organelle to nucleus, namely retrograde regulation of nuclear gene expression, was largely unknown. Due to the nuclear-cytoplasmic incompatibility in cytoplasmic male-sterile (CMS) plants, we employed CMS Brassica juncea to investigate the retrograde regulation of nuclear gene expression in this study. We studied how reduced BjRCE1 gene expression caused by the nuclear-cytoplasm...
متن کامل